Complex Nanostructures by Pulsed Droplet Epitaxy

نویسندگان

  • Stefano Sanguinetti
  • Claudio Somaschini
  • Sergio Bietti
  • Noboyuki Koguchi
چکیده

What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi‐function nanostructure, thus allowing an unprecedented control over electronic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory

We present a unified model of compound semiconductor growth based on kinetic Monte Carlo simulations in tandem with experimental results that can describe and predict the mechanisms for the formation of various types of nanostructures observed during droplet epitaxy. The crucial features of the model include the explicit and independent representation of atoms with different species and the abi...

متن کامل

A unified model of droplet epitaxy for compound semiconductor nanostructures: experiments and theory

We present a unified model of compound semiconductor growth based on kinetic Monte Carlo simulations in tandem with experimental results that can describe and predict the mechanisms for the formation of various types of nanostructures observed during droplet epitaxy. The crucial features of the model include the explicit and independent representation of atoms with different species and the abi...

متن کامل

Formation of Spatially Addressed Ga(As)Sb Quantum Rings on GaAs(001) Substrates by Droplet Epitaxy

In this work we report on the ability to form low density Ga(As)Sb quantum ring-shaped nanostructures (Q-rings) on GaAs(001) substrates by the droplet epitaxy technique. The Q-rings are formed by crystallization of Ga droplets under antimony flux. After being capped by a GaAs layer, these nanostructures show surface mounding features that are correlated with the buried nanostructures, as demons...

متن کامل

Concentric Multiple Rings by Droplet Epitaxy: Fabrication and Study of the Morphological Anisotropy

We present the Molecular Beam Epitaxy fabrication of complex GaAs/AlGaAs nanostructures by Droplet Epitaxy, characterized by the presence of concentric multiple rings. We propose an innovative experimental procedure that allows the fabrication of individual portions of the structure, controlling their diameter by only changing the substrate temperature. The obtained nanocrystals show a signific...

متن کامل

Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

WE PRESENT THE MOLECULAR BEAM EPITAXY FABRICATION AND OPTICAL PROPERTIES OF COMPLEX GAAS NANOSTRUCTURES BY DROPLET EPITAXY: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011